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MAPPINGS OF BOUNDED DILATATION
OF RIEMANNIAN MANIFOLDS

S.I. GOLDBERG, T. ISHIHARA & N. C. PETRIDIS

1. Introduction

Let M and N be Riemannian manifolds of dimensions m and #, respectively.
Recently, two of the authors introduced the concept of a quasiconformal
mapping f: M — N and applied it to obtain distance and (intermediate) volume
decreasing properties of harmonic mappings between Riemannian manifolds of
different dimensions [2], [3]. In this paper the concept of a mapping f: M — N
of bounded dilatation is introduced which is more general and natural than that
of a K-quasiconformal mapping when m and » are greater than 2. An example
of such a mapping which is not K-quasiconformal is given which is even
harmonic. In § 5, generalizations of the Schwarz-Ahlfors lemma as well as
Liouville’s theorem and the little Picard theorem are given for this class of
mappings.

Let f: M — N be a harmonic mapping of bounded dilatation of Riemannian
manifolds. 1f the upper bound || £, ||* of the ratio of distances attains a maximum
at x e M, then under suitable conditions on the bounds of the sectional curva-
tures at x and f(x), f is distance decreasing.

If M is a complete connected Riemannian manifold of constant negative
curvature —A, in particular, if M is the unit open m-ball with the hyperbolic
metric of constant curvature — A, then the condition on ||f, || may be dropped
by virtue of the technique employed in § 5. Indeed, let N be a Riemannian
manifold with sectional curvatures bounded above by a negative constant de-
pending on A. Then, if f: M — N is a harmonic mapping of bounded dilata-
tion, it is distance decreasing.

The technique employed to prove this statement also yields the following
fact.

Let M be a complete connected locally flat Riemannian manifold and let N
be an n-dimensional Riemannian manifold with negative sectional curvature
bounded away from zero. Then, if f : M — N is a harmonic mapping of bounded
dilatation, it is a constant mapping.
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2. Mappings of bounded dilatation

Let V be a Euclidean vector space of dimension m and let V* be its dual space.
Let {¢,, - - -, e,} be an orthonormal basis of V' with dual basis {0, - - -, @a}.
A quadratic function on V is an element of (VV ® V)*, so since (V & V)* is
canonically isomorphic to V* ® V*, a quadratic function on V' may be written
as f = 2f;0;, ® w;. If fis symmetric and positive semidefinite an orthonormal
basis {e;} can be chosen so that f,; = Ofor i jand f; = yi >0 for i = 1,

.,k < m, where k = rank f.

Let W be a Euclidean vector space of dimension » with inner product 4,
and let F: V — W be a linear mapping of rank & < min (m, n). We choose an
orthonormal basis {e;} of V so that

F*h = 3 7o, R, .

The vectors 5; = (1/y;)Fe;, i = 1, - .., k, form part of an orthonormal basis
of W. (If all of the y, vanish, F = 0.) Let X = J7x, be a vector of unit
length and assume F =+ 0; then FX = Xy%,, where x* = y'/y,. Consequently,
if Fis of rank k, it maps a unit (k — 1)-dimensional sphere of V' to a (k — 1)-
dimensional ellipsoid of W with semiaxes of lengths y, >y, > -+« > 7, > 0,
where yI = 2;, i = 1, - - -, k, are the eigenvalues of ‘FF: V — V.,

Definition 1. The ratio

L= 7/Tsu15 s=1,--, k-1

will be called the s-th dilatation of F.
The mapping F: V' — W induces a mapping A2F: APV > A\?W, p<
min (m, n) given by

/‘\PF(eil/\ /\eip):Feil/\ /\Feip’
where 1 < i, < i, < -.. <i, < min (m, n). We define the norm || A ? F|| by

IAPFIP = ‘._Z.d NP F(eg, A\ oo Ney), NPFleg, N - Ne)y.

1<

Thus
IAPFEIF = 35 Ay Ay

P <Tp

If1<p<Lg<s<kandl, <K, the following fact is easily established.

Lemma 2.1.
NAZEIRN™ < ko [ HATFIE J /
a1
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We shall require an inequality reversing that in Lemma 2.1. We put g, = 1
and 11, = Sk, - - zm(ﬁ), 1 <i < ... <i,< k. Since 4, > 0, by Newton’s

inequalities we have y, sz, ,, < ¢ and therefore y, > 14* > -+ - > 1i/*. These
inequalities imply

(2'1) [ H/\pFHZ_] v > [_U/\JELIZ. e s 1<p
(v) (a)
14 q

In the sequel, it is assumed that M and N are Riemannian manifolds of
dimensions m and n, respectively. Let f: M — N be a C> mapping, and
(fo)o: To(M) — T, ,,(N) be the induced mapping of tangent spaces at x.

Definition 2. If either (f,), = O at each point x e M or any one of the
dilatations [(x), i = 1,.--,k — 1, Is bounded on M, then f is said to be of
bounded dilatation. For a nonconstant mapping of bounded dilatation, /,(x) is
always bounded. In this case, K will denote the l.u.b. of [(x) and f will be
said to be of bounded dilation of order K.

Remark. Since /;(x) < Ii(x) for i <j < k, a K-quasiconformal mapping in
the sense of [2] and [4] is a mapping of bounded dilatation. If m = n = 2 the
two notions are identical. However, for m and n greater than 2, a mapping of
bounded dilatation is not necessarily quasiconformal as the following example
shows.

Let U be the open submanifold of E® given by {(x,y,2) ¢ E*|x* + ¥* >
1/(a + 1)%,a = —1} and let f: U — E? be defined by

., 1 )
= —(x* — ,3.X,-————Z .
f (2( Y035y

Then the eigenvalues of ‘f.f, are 4, = 9(x* + ), 4, = x* + »* and 1, =
1/(a + 1)%. Consequently [,(x,y,2) = 3 and L{(x,y,2) = 3(a + D(* + yHV
Observe that f is also harmonic (see § 3).

In the sequel, a mapping of bounded dilatation will be assumed to have the
same rank k at each point of M.

Lemma 2.2. A C~ mapping f: M — N is of bounded dilatation of order
K if and only if

Il <K KA N

Proof. The necessity follows from Lemma 2.1. For the sufficiency suppose
that /, = (4,/4,)"* is unbounded. Then

e — 2

A (Z “)

i<F
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A A Ak A A N2
= (L 414+ -2 4 00 £ 2E )/(___ + terms < _,_1_)
( 2 22 22 22 22

2/ -G/ - /6)

$0 [/f«!2/1l A*fsll is unbounded.

3. Harmonic mappings

In this section, the conditions for a harmonic mapping f and a formula for
the Laplacian of ||f, | are given. By the method of moving frames we write,
locally, the metric ds® of a Riemannian manifold M of dimension 1 as

ds: = o} + -+ + o,
where the w, are linear differential forms in M. The structure equations are
dwi=};wj/\wji, w; + w; =0,
dwij=>k:w~;k/\wkj+9ij, Qi+ £2,4,=0,
where the w;; are the connection forms and the {2;, are the curvature forms.

If {e,} is the orthonormal frame dual to the coframe {w;}, the connection D in
the tangent bundle is given by

Dei = Z w;;€; .
J
The £;; may be expressed as

Qii = —3 > Rijuor N\ o,

k,l
where the functions R,;,, are the components of the curvature tensor. The
Ricci tensor R;; is defined by
R'L‘j = ; Rikjk
and the scalar curvature R by

R = Z R“ .

Let N be a Riemannian manifold of dimension » (not necessarily that of M)
and let f: M — N be a C* mapping. Corresponding quantities in N will be
denoted with an asterisk. Thus the Riemannian metric ds*? of N is given by
ds*? = Xo**, (In the sequel, we will use the convention /,j, &k, --- = 1, ---,m
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and a,b,c,--- =1, ---,n.) Under the mapping f a tensor field with com-
ponents A¢ is defined by

3.1) frot = 3 Afw; .

Later on we will drop f* in such formulas when its presence is clear from
context. Taking the exterior derivative of (3.1) and using the structure equa-
tions in M and N, we get

; DA Nw; =0,
where
(32)  DA? = dA? + T Afou + I Atol, = T Ao, (ay) ,
Al = Ay, . j
The mapping f is said to be harmonic if
2 A5 =0.
The simplest case is a smooth mapping f = (f,, ---,f,): E™ — E®. Then

fo = 2Adx; & 9/0y,, where x; and y, are the coordinates in E” and E” re-
spectively and 4A¢ = 3f,/0x,. Hence

Df, = 3 A%dx; @dx; ®3/8y, »

a,t,d

where A7, = 7°f,/ox,0x,. Classically, f is harmonic if and only if

2
nAy=x% 0, a=1,...,n

Differentiating (3.2) and using the structure equations in M and N, we get
2 DAY N w; = 3 A3y + 2 AV,
¥ 7 b
where
DA;:lj = dAgj + Z A;jwki + Z A?xwkj + Z Agjwzka
(3‘3) £ 3 D
= Zk: Ay (say) .
For a C~ function ¢ on M the Laplacian 4d¢ is defined in terms of the

covariant differential / in M by

dp = ; Voler, ex) .
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Applying this definition to ¢ = ||f,|f = (4w, ® e}, TAfw; ® e} and using
the Leibnitz rule, we have

Vo = 2{}, DAtw; ® ef, L Ate, @ €ef) =12 3 AIDAY

Vi =23 (DADA? + AID'A?)

the latter becoming, by (3.2) and (3.3),

VZ”f*”Z =2 E (AaAa + A(lAi]k)w] & wy .

Q,%,7,
Consequently

(3.4) g Jf = 2 (ALAY + ATAY) .

i, 5,a

From (3.1) and (3.3), we get

2 DA Ny = 2 Afeon N g

- d(; Atr) + Z(ZAt0) Aow — Z(ZAte,) Aot
= —%‘ Z A lekla)k N, — _ E A Rbacdwc /\O)

7okl bcd

= 3 B[S AR + T RbadtiAt o Ao

b,¢,d
which implies

(3.5) Al — Ay = — Zt] AR iy — bZd ALALATRY,. -

In (3.4)
3 (ALAL + ATAL)
a,i,J
Z (A5)* + 20 AHAy; — A% + 3 ATAG;, .

a,i,j 1,7

(3.6)

fl,

Observing that A, = A%, and taking into account (3.5) and (3.6), we can
write the formula (3.4) for the Laplacian as

|1 P = 2 (A%)" + Z Ry;AAf

a,i,j

(37) - a bZ d R:bmA iLA!;AYA(Ji + u;J AaA;L]l '
i '

If f is harmonic the last term in (3.7) vanishes.
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4. Harmonic mappings of hounded dilatation

Let A* = (A}, ---,A%) and A; = (A4}, - - -, A?) be local vector fields in M
and N, respectively. Then locally

2 lAtE = 2 AP = 1P -
If there are constants C,; and C, such that
C, < the sectional curvature of M < C, ,

then at x we have
4.1 (m — DCf F < 2 RyjAtA; < (m — 1) Giif.lF,

where ||, |F = 2(A#)*. Similarly, if the sectional curvatures of N at f(x) are
bounded above by a constant C, then

(4.2) 2 R AT AGAIAT < 2C I Al -

Theorem 4.1. Let M and N be Riemannian manifolds of dimensions m
and n respectively, and let f: M — N be a harmonic mapping of bounded
dilatation (of order K). Then

4.3) Blf.JF < ﬁg—lkzm ,

if ||« attains a maximum at x e M,

(a) the sectional curvatures of M at x are bounded below by a nonpositive
constant — A, or M is an Einstein manifold with the scalar curvature R at x
satisfying R > —m(m — 1)A, and

(b) the sectional curvatures of N at f(x) are bounded above by a nonposi-
tive constant — B.

Proof. Since |/f,|| attains its maximum at x, 4, ||f.|? < 0. Applying (3.7)
we have

4.4) — 2 R ATAJAAT < — 31 Ry;ALAT
at x. Condition (a) together with (4.1) gives

(4.5) — L RyAtA; < (m — DA% .
Similarly, condition (b) and (4.2) imply

(4.6) 2B Nfulle < — X RiyeaAiA;AAT
From (4.4), (4.5) and (4.6) we obtain
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2B A\ fille £ (m — DAL -
Finally, from Lemma 2.2 it follows that
.7 Blfyl% < 30m — DKK'A

which proves the theorem.

Corollary 4.1. If M is locally flat and the sectional curvatures of N are
bounded above by a negative constant — B, then either ||f.| does not attain
its maximum or f is a constant mapping.

The following generalizes Theorem 5.3 in [3].

Corollary 4.2. Let f: M — N be a harmonic mapping of bounded dilata-
tion of order K with the function ||f,|| attaining its maximum on M. If

(a) the sectional curvatures of M are bounded below by a nonpositive
constant — A, or M is an Einstein manifold with scalar curvature > —m
(m — 1)A, and

(b) the sectional curvatures of N are bounded above by a negative constant
— B, then

lUVWngsk(kf”liz;LjL ,

K, I<p<k
D 2 B

Proof. Since (4.7) holds at every point of M, the result follows from (2.1).

Corollary 4.3. Under the assumptions of Corollary 4.2, if B > 4(m
— DK*K*A and M is connected, then the mapping f is distance decreasing. If
m = nand B > in(n — 1)K*A4, then f is volume decreasing.

Proof. From (4.7) we get

-1 A
.0k < M ekt 20 x e .
X < 5 BH I

Corollary 4.4. Let M be a compact locally flat Riemannian manifold, N
a Riemannian manifold of nonpositive constant curvature, and f: M — N a
nonconstant harmonic mapping. Then N is locally flat.

Corollary 4.4 is well known (see [1], [S]).

Proof. Since M is compact the inequality (4.7) holds at some point x.
Hence, since f is not constant, 4 = 0 implies B = 0.

5. Generalizations of the Schwarz-Ahlfors lemma, Liouville’s
theorem and the little Picard theorem

Let d§* be a Riemannian metric of M conformally related to ds®. Then there
is a function p > 0 on M such that d§* = p%ds®. In the sequel, the elements of
M referred to d3* will be distinguished with a tilda. The notation otherwise
being as above, we have
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(5.1 /Iff =qA}, &; = pw;, & = wy + Pw; — Pw;

where ¢ = p~', dp = Zp@i, dg = Zqicbi and pq; = —qp;. From (3.7) it
follows that the Laplacian 4 of # = 3(A¢)* with respect to d$? is

(5.2 $da = T (A5) + X RyArds — ¥ Ry, Ar AV AsAY + y, A Ay,

By (3.2) and (3.3) we obtain

(5.3) T @ figﬂ)m,ﬂ —d <; ,Z;f].) £y <z A“)wba .

On the other hand, (3.2), (3.3) and (5.1) imply

(5.4) Z;?j = 242q, + ¢*AS; — 33 Aiqy , j: not summed.
&

If f is harmonic with respect to ds?, then
(5.5) DA =@ —m T A .
J

Substituting (5.5) into (5.3) we get
(5-6) Z A]]k — (2 - m)q Z (Aaq]k + q] ) 3

where q;; is defined by

dq, + 20 Qo = 2] qejo; 9z = qrj -
J K

By (5.6), the last term in (5.2) becomes
(5.7 3 Ardy = @2 — m¢ Z (A}A3q; + ALASq;) .

@, i, J
If # attains a maximum at x ¢ M, then
T Ay = p; I (47
at x. Formula (5.7) then becomes

(5.8 S OAvdy = (m - g T ALANQ; — qi)

a,t, a,t,j

where 0 = Z: (pg,)*.

From (5.2) and (5.8) the following lemma is immediate.
Lemma 5.1. Let f be harmonic with respect to (ds?, ds*?), and let i attain
its maximum at x € M. If the symmetric matrix function

X =Q08; — qy
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Is positive semidefinite on M, then

~ D Rh At A4 AT < — T R4 A
at x.

Theorem 5.1. Let B™ be the m-dimensional unit open ball with the metric
ds® = 447'(1 — r®)~22dx2 of constant negative curvature — A, and let N be an
n-dimensional Riemannian manifold with sectional curvatures bounded above
by a negative constant —B. If f: B™ — N is a harmonic mapping of bounded
dilatation of order K, then

/ —
5.9 AL < k(K ) }’11’71———10 , 1<p<k
p

Proof. Let B, be the open ball of radius « (< 1). In B, we take the metric
dst = 447 oM — r9)~*2dx? with constant curvature —A. Then d§* = pids®
in B,, where p = a(1 — r)/(a® — r®) and r* = Xx} The matrix X,; is then
given by

_ Al - =4+, AL -
X” 2at(l — rz)z 5” + (a 2)1(

252"7' - xi.xJ') .
Clearly, X, is positive semidefinite. The function
~ — 2
a= Sy =020 D

attains its maximum on the closure B, of B,. But # vanishes on the boundary
of B,. Hence it attains its maximum at a point x € B,. Applying Lemma 5.1
we get —IR¥,,ACA A4 < (m — 1Aid, for R, = —(m — 1)A45,;. Let
I A? f«llc) denote the norm of A? f, with respect to d5*. Then, as in the proof
of Coroliary 4.2,

2B N Tyl < (m — DA [ fellx
at x. Applying Lemma 2.2 gives

—1
”f:k”(,,) < _th.wz—v__sz B K‘

everywhere on B,. Since the preceding inequality holds for every «, and
lim ||f, i}, = iIfif, we conclude that
a—1

Ii f * ”Z 742_*,_,,_ k2
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Corollary 5.1. Under the conditions in Theorem 5.1, if B> L(m — 1)k*AK*,
the mapping f is distance decreasing.

In the case where M = E™ with the standard flat metric, Corollary 4.1 can
be improved as follows.

Theorem 5.2. Let N be an n-dimensional Riemannian manifold with nega-
tive sectional curvature bounded away from zero, and let {: E™ — N be a
harmonic mapping of bounded dilatation. Then f is a constant mapping.

Proof. Let B, be the open ball of radius « with metric d§* = a*(e® —
ry2¥dx?. Then d§* = p*3dx? where p = /(o — r%). In this case,

2 2
Xy = 2(a — r*)*azj + - '4;*(#5/:]‘ — XX5)
a

a4

so it is also positive semidefinite. Since the function & = ||f,[f,, = ¢2(AL)
attains its maximum on B, and vanishes on the boundary of B,, it must attain
its maximum in B,. Since the sectional curvature of N is bounded above by
—e for some constant ¢ > 0, from the inequality (4.7) it follows that

el falfey < 2a7%m — KK .

Hence [|f, i = lim ||f, |}, = 0.

If z: § — M is a Riemannian covering we have easily
Lemma 5.2, Let f: M — N be a C* mapping and f = for. Then

”/\pf*H.L':H/\I}f*y‘lx(‘,;)s xeS.

If M is a complete connected Riemannian manifold of constant curvature
¢, then its universal covering space is

S* for ¢>0, E™ for ¢=0 and B™ for ¢ <0,

where S™ is the m-sphere of constant curvature ¢ (> 0), and B™ is the unit
open m-ball with the metric ds* = —4c¢™ (1 — r?)~?3dx? of constant curvature
c(<0).

Hence by Proposition 4.1 of [3], Theorems 5.1 and 5.2 and Lemma 5.2
above, we get

Theorem 5.3. Let M be a complete connected Riemannian manifold of
positive constant curvature and let N be a manifold with nonpositive sectional
curvature. Then a harmonic mapping from M into N is a constant mapping.

This fact is well known [1].

Theorem 5.4. Let M be u complete connected Riemannian manifold of
constant negative curvature —A and let N be a Riemannian manifold whose
sectional curvatures are bounded above by a negative constant —B. If f: M — N
is a harmonic mapping of bounded dilatation of order K, then the inequality
(5.9) is satisfied.
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Thus, if B > i(m — 1)k*K'A, the mapping f is distance decreasing. In the
equidimensional case, if B > in(n — 1)K'A, f is volume decreasing.

Theorem 5.5. Let M be a complete connected locally flat Riemannian
manifold and let N be a Riemannian manifold with negative sectional curvature
bounded away from zero. Then a harmonic mapping of bounded dilatation
f: M — N is a constant mapping.

Theorem 5.5 generalizes Liouville’s theorem and the little Picard theorem.
For, in the first case, a bounded domain in the complex plane C is contained
in a disc which has constant negative curvature with respect to the Poincaré
metric, and in the latter case, C — {2 points} carries a Kaehler metric of
negative curvature bounded away from zero.
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